A &) ; : H i
P 1 Arizona State
nﬁ N ’f{ @ University of Colorado %l University

NANJING UNIVERSITY BOUlder

On-the-fly Quarantine Before Patches
for N-day Kernel Vulnerabilities Are
Available

Zicheng Wang, Tiejin Chen, Qinrun Dai, Yinggang Guo,
Yueqi Chen, Hua Wei

Work-in-Progress

Background

N-day Vulnerabilities

Vulnerability
introduced

Vulnerability
discovered

Patch
merged

0-day / n-day attacks while patches are unavailable

Patch
deployed

A

A

66 days on average

4

A 4

Real-time Defense

- Usenix Security’23: PET, Prevent Errors From Being Triggered.
- Usenix Security’24: SeaK, Prevent Heap Vulnerabilities From Being Exploited

- Vulnerability Behaviors are Complex

multiple triggering condition / exploitation path
current defense are ad-hoc

On-the-fly OS Quarantine (02Q)

- Eliminate the complex vulnerabilities inside the Quaratine Zone

- Classic sandbox can absolutely isolate complex vulnerabilites

- Design for 0-day vulnerabilities, hardly deploy on-the-fly compare to the
related work

- Challenge: Object-lifetime problem

APP

User

Kernel

[a .ﬁ. Quarantine
T @D Zone

Dynamic instrumentation
+

ML Auditing

Kernel

Deploy begin Deploy end

Object-lifetime Problem 5 -
| > g
- Object O belongs to Quarantine Q o
- O was allocated before the deployment Object O's lifetime
- Ois not released after deployment
- Ois not tracked by the sandbox
- O haS no metadata In the System Ttatic int __inet6_bind(struct sock *sk, ...
- Q access to O cannot be verified e _
struct inet_sock *inet = inet sk(sk);
J:.x.u‘at—>inet_rcv_saddr = védaddr;
inet->inet saddr = vdaddr;
- 10,862 objects’ lifetime longer than 10s, has Trying to Access addr type
the problem SIS o Tracked | | s L
- average 22.87 times of modification during Q— v x Mo] wa]
object lifetime Uniscked oo G AT A

- solution: ML auditing

OxFF£888... |70 53 8C OD CO A8 3B 81 2F 4C | content

addr content

Security Model

- Kernel is trusted

- Untrusted components
are confined within
quarantine zone

Kernel Quarantine
read write exec read write exec

Kernel Code v N N

Kernel Data v N N

Kernel Heap v N N

Kernel Stack v N N

02Q N N N N

Quarantine Code V J N N N
Quarantine Data V J N N
Quarantine Heap V J N N
Quarantine Stack v J N N

On-the-fly OS Quarantine: Workflow

- phase 0: build a sandbox, collect data, train model, synthesize eBPF program
- phase 1: load eBPF start protection

Kernel Object Profiler ML Model Kernel Quarantine

8 ~—Y—) %
bl %=

Heap

Stack — {:('):} Stack | Stack
nﬂﬂd > < O ¢
Kernel Source .)
Code <> Code Analyzer eBPF Program ML Auditing + Quarantine
|
Phase 0 Phase 1 — >

t

02Q Phase 0: Code analyzer

=

Identify and enforce mechanisms related to mandatory
execution directives, constraining data access and
control flow within quarantine zones.

- Indirect jump instructions
- Memory write instructions
- Subject switch instructions

Performance optimization with 24.07% reduction in instrumenting

- Skip Determining Address
- Ignore stack access

- Ignore redundant checks
- Ignore return checks

Indirect jump: call *%rax

Memory write: mov $0x0, (%rsi, %rdx, 1)

Determined address: mov off(%rip), %rax

Stack frame create: sub offset, %rsp

Stack access: mov x, off (%rsp/rbp)

Redundant check: mov $0x0, offl(%rsi)

Redundant check: mov $0x0, off2(%rsi)

02Q Phase 0: Model Training

@)
if - Object Profiler

Feature Lable

Data object content Data object type/ if belong to quarantine

Collect when object released Record stacktrace when allocate,
Analyze object type offline

513 - Decision Tree Model

- Better suited for processing tabular data than deep learning
- Interpretable and have a defined execution time

- Does not lose quantitative accuracy of the model

- Can be converted to BPF implementation

02Q: Phase1 Auditing and Quarantine

- Eliminate the complex vulnerabilities inside the ¥ ¢BPF Prog Quarantine
Quaratine Zone

Call Quarantine (O]
- Control flow __ check params & ret @D call/icall Kernel function
- Private heap & stack «©
- Data object
- Legitimate parameters and return values

A\ 4

\4

back to Quarantine

icall inside Quarantine

A

\ 4

ge

memory access

A

\ 4

g®

heap allocation/free

A

A 4

redirect to private heap

Checkret @ return to Kernel

A

F® access legal/illegal

@ switch Quarantine stack/heap

@ switch Kernel stack/heap

02Q: Evaluation

[LMBenchw/ML mmm LMBench w/o ML = Phoronix w/ ML W= Phoronix w/o ML ip6_output.c I ip6_output.c-ml |IPv6 B IPve-ml I HAKC

1.05 1 1.25
1.0171 1.01691.0154
1.00291.0039 1.0088, ' : : 0.990.99 1.00
1.004 1.00 0.980.98 ' . . 0.98 0.98
0.95 1 0.754
0.90 1 0.50+
0.85 1 0.251
0.80 - — s iability 0.00+
ip6_output.c ipvi scalabili
(1470 loc) (78213 loc) (255330 loc) 100 KB 1 M B 10 MB

overhead to the system performance loss to the quarantine zone

02Q: Evaluation

Object Type Quarantine Accuracy Macro F1 Accuracy Macro F1
Accuracy Macro F1 Accuracy Macro F1 Feature Length
Ve 32 88.40+0.42 (73.97+3.8} 98.75%0.41 91.91+2.32
Decision Tree | 96.88+0.65 | 75.56+1.84 | 99.99 +0.02 | 99.98 + 0.03 64 8915+ 033 |7724+42]1 199914007 19947 +0.45
Random Forest| 96.91 +0.63 | 78.81+0.73 100 + 0.01 99.99 + 0.01
128 89.18+0.29 |77.44+43 99.85+ 0.1 99.46 + 0.64
Neural Network| 89.63 +1.29 | 38.76+2.70 | 99.99 + 0.01 99.99 +0.01
256 89.26+0.29 |77.34+5.0¢ |99.92+0.08 |99.51+0.49
Sched
Decision Tree | 80.48+0.76 | 71.04+1.77 | 99.93+0.14 | 97.74 +4.22 1024 18947023 |78.17+4.84 199.92+£0.07 199.51+0.46
Random Forest| 80.61+0.69 | 76.28 £ 0.49 1000 99.99 £ 0.01 Max Dept|1
Neural Network| 65.98 +6.91 | 39.18 + 1.48 99.66+0.03 89.47+1.20 3 61.18+245 [1.72+0.19| |97.47+04 179.34 +3.03
Netfilter 7 7659 +2.38 8.48+0.58| (99.44+0.21 (96.44 +1.32
Decision Tree 89.47+0.23 | 78.17+4.88 | 99.92+0.07 | 99.51 £ 0.46 10 8354 +219 121,06+ 2.1? 9965+ 014 |97.78 + 0.86
Random Forest| 89.54+0.15 | 81.87+1.86 | 99.96 +0.05 | 99.77 £ 0.29
14 8947 +£0.23 (78.17+4.8 99.92 + 0.07 |99.51+0.46
Neural Network| 72.9 +2.23 37.98 £2.83 97.16 £0.17 74 + 2.56

performance of ML auditing

performance of tuning decision tree feature and depth

Thanks
Github Repo: @ @

https://github.com/a8stract-lab/o2c

https://github.com/a8stract-lab/o2c

